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Abstract
We show that various surface parameters in two-dimensional diffusion limited
aggregation (DLA) grow linearly with the number of particles. We find the ratio of the average
length of the perimeter and the accessible perimeter of a DLA cluster together with its external
perimeters to the cluster size, and define a microscopic schematic procedure for attachment of
an incident new particle to the cluster. We measure the fractal dimension of the red sites (i.e.,
the sites such that cutting each of them splits the cluster) as equal to that of the DLA cluster. It
is also shown that the average number of dead sites and the average number of red sites have
linear relationships with the cluster size.

(Some figures in this article are in colour only in the electronic version)

Diffusion limited aggregation (DLA) is a model of a growing
cluster, originally proposed by Witten and Sander [1]. The
model has been shown to underlie many pattern forming
processes including dielectric breakdown [2], electrochemical
deposition [3], viscous fingering and Laplacian flow [4] etc.
It is defined by a simple stochastic model on a square lattice
as follows. A seed particle is located at the center of the
lattice, and then a random walker is released from infinity—
operationally, from a point at a radial distance much larger than
the radius of the growing cluster. Upon contacting, the random
walker sticks irreversibly to the cluster. Repeating the process
leads to an intricate and ramified structure whose surface in the
plane grows proportionally to the bulk (this will be shown in
this paper).

This procedure is equivalent to solving Laplace’s equation
outside the aggregated cluster with appropriate boundary
conditions. In two dimensions, since analytic functions
automatically obey Laplace’s equation, the theory of conformal
mappings provides another mechanism for producing the
shapes. This method has been directly used by Hastings and
Levitov to study DLA [5].

One of the most interesting aspects of such an aggregate
is the multifractal behavior of the growth site probability
distribution (the harmonic measure) {pi}, where pi is the
probability that the site i , belonging to the perimeter of the
cluster, will grow at the next time [6–8]. The screened
sites with tiny growth probability play an important role in

determining the multifractality, while evaluating the harmonic
measure on these sites is too difficult. The theoretical difficulty
emerges from solving equations with boundary conditions on
a complicated growing interface.

Different numerical methods applied for large aggregates
in a plane show that DLA does not follow a simple fractal
pattern and deviates from linear self-similarity [9]. Although
most of the studies have been focused on the scaling behavior
of different quantities in DLA, here in this paper we show that
there exist a couple of linear relations which, to our knowledge,
have not been addressed yet. We show that the perimeter and
the accessible perimeter of a growing aggregate, together with
their external perimeters, grow linearly with the cluster size
n, with different rates. The number of sites which are not
accessible to the incident random walker will be shown to be
increased linearly with the size. Our results indicate that for
most particle attachments (in which a particle is assumed to
be at the center of a square of the mesh size a) the choice is
single-side contact. We also use the concept of red sites as a
measure of ramification of the aggregates and compute their
fractal dimension. The average number of red sites is another
quantity which has a linear relationship with the number of
aggregated particles.

In order to investigate the behavior of the aforementioned
quantities, we simulated several independent on-lattice DLAs
of different mass up to n = 105 particles. One can see that
an ensemble of simulated DLAs is strongly fluctuating, and to
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Figure 1. A putative small DLA cluster of n aggregated particles
shown in shaded squares. The squares marked with × show the dead
sites which are inaccessible to the random walker coming from
infinity. The hull of the DLA, defined in the text, is the union of the
solid and dashed lines. The outer perimeter is the union of the solid
and dotted lines. The accessible perimeter is the hull of the union of
the DLA cluster and the dead sites. The (n + 1)th incident random
walker may make a positive, negative or zero contribution to the
length of the hull, denoted by p+, p− and p0, respectively.

obtain consistent results the averages have to be taken over a
large number of samples. In this paper, the averages are taken
over 5000 independent samples for different cluster sizes.

The first object that we investigate is the perimeter or hull
of an aggregate. Consider a cluster of aggregated particles on
a square lattice (see figure 1), where each frozen particle in the
cluster is assumed to be located at the center of a plaquette. To
define the hull, a walker moves clockwise around the aggregate
and along the edges of the corresponding lattice starting from a
given boundary edge on the cluster. The direction at each step
is always chosen such that walking on the selected edge leaves
a frozen particle on the right and an empty plaquette on the left
of the walker. If there are two possible ways of proceeding,
the preferred direction is that to the right of the walker. The
directions right and left are defined locally according to the
orientation of the walker. This algorithm yields the hull of the
DLA whose length l (in units of the mesh size a) is equal to the
number of steps until the walker returns to the starting edge.

Let us denote the length of the hull of a cluster of size n
by ln . We now show that ln must be proportional to the cluster
size.

To have a cluster of size n + 1, a random walker is
released from infinity. It sticks to an edge of the hull with a
probability proportional to the harmonic measure there. We
define the three possibilities as shown in figure 1, during which
the random walker can stick to the cluster having single-side,
double-side or triple-side contacts. Upon selecting each of
them, it may make a positive, negative or zero contribution to
the length of the updated hull. According to its contribution,
we denote the probability that the random walker selects each
of the three possibilities as p+, p− and p0, respectively. It
can be easily checked that the events with single-side contacts
always make a positive contribution of +2 to the length of
the hull, while the two other possible events can make either

Figure 2. The hull (dark) and the accessible perimeter (light) of a
DLA cluster of size n = 105.

zero contribution or a negative contribution of 2n−, with n− �
1. One can indeed define the length of the updated hull by
considering these contributions to the previous length ln, using
the following recursive relation:

ln+1 = ln + 2[p+ − n− p−]. (1)

As our following experiments suggest, for n � 1, that the
last term in the above relation seems to be independent of
the cluster size and, therefore, one can obtain that ln ∼
2[p+ − n− p−]n. Our simulation result for the average length
of the hull ln as a function of the cluster size n is in good
agreement with this linear relationship; see figure 3. We find
that ln

n = 1.791(2). This yields the infimum of the probability
that the incident random walker chooses a single-side contact,
and hence we obtain p+ � 90%.

In addition to studying the hull of the aggregates, we also
study the external perimeter of the hull which can measure the
number of sites that get trapped in the fjords (proportional to
n−). To define the external perimeter, we first close off all the
narrow passageways of a lattice spacing on the DLA cluster
and then look at the hull of the resulting cluster (see figure 1).
We find experimentally that the length of the external perimeter
l ′n also has a linear relationship with the cluster size n. The best

fit to our data gives l′n
n = 1.325(2).

All sites on the hitherto considered perimeters are not
necessarily accessible to the incident random walker in all
regions of the aggregate. Therefore, it is of interest to
measure the totally accessible perimeter which is, in principle,
a hull that surrounds the union of the DLA cluster and all
sites inaccessible to the incident random walker coming from
infinity—see figures 1 and 2.
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Figure 3. From top to bottom: the rescaled length of the perimeter
ln , external perimeter l ′

n , accessible perimeter l
′′
n , accessible external

perimeter l
′′′
n , and rescaled number of dead sites Nd versus the cluster

size n. The errors are less than the symbol size. The solid lines
indicate the best linear fit of zero slope.

In order to determine the accessible perimeter, we
introduce an algorithm which seems to be more efficient than
one used in [11]. This may be called the ‘burning algorithm’,
during which each accessible site around the cluster will be
marked as a burning site, and all cluster sites and inaccessible
ones will be left unmarked.

The algorithm begins by drawing a box that includes the
entire cluster without touching it, and ‘marking in’ from the
boundary of the box. A boundary site of the box is selected
and is marked as ‘free’ if there is no cluster site in its nearest
neighborhood and as ‘burnt’ otherwise. If the site is left
‘free’ marked, after checking all of its nearest neighbor sites
and marking each of them as ‘free’ or ‘burnt’ as before, it
is recolored as ‘burnt’. Repeating this procedure for all sites
that are ‘free’ marked and all unmarked boundary sites of the
box, the inside of the box will be partitioned into two regions;
one contains the sites which are being marked as ‘burnt’ sites
and all of which are accessible to the random walker, and the
other region, i.e., the inaccessible region, is the union of the
cluster sites and unmarked sites (or dead sites) which are not
accessible to the random walker. The accessible perimeter is
then the hull of the inaccessible region.

We find that the average length of the accessible perimeter
l

′′
n and the average number of dead sites Nd grow linearly with

the cluster size n. The linear relations can be obtained as shown
in figure 3, according to l

′′
n
n = 1.203(2) and Nd

n = 0.554(2),
respectively.

Following the same ratiocination as for equation (1) for
these observations, one can estimate the probability that the
incident particle sticks to the accessible perimeter of the DLA
with a single contact. We denote the same probabilities as
before, that the incident random walker coming from infinity
sticks to the accessible perimeter with single-side, double-side
or triple-side contacts, by p′+, p′− and p′

0, respectively. Note
that for the hull of the accessible perimeter, all single-side,

Figure 4. Linear relationships between different perimeter lengths
and the area enclosed by them. From top to bottom: the length of the
external perimeter l ′

n , accessible perimeter l
′′
n and accessible external

perimeter l
′′′
n , rescaled by their enclosed areas denoted by A′

n , A′′
n and

A
′′′
n , respectively.

double-side and triple-side contacts always make positive, zero
and negative contributions (of +2, 0 and −2, i.e., n− = 1)
to the length, respectively. Unlike the DLA perimeter case
(because of the screening with the dead sites), all sites on the
accessible perimeter have nonzero growth probability. It can
be again shown that l

′′
n ∼ 2[p′+ − p′−]n. This result is checked

in figure 3, according to which we obtain that the length of
the accessible perimeter l

′′
n grows linearly with the cluster size

n as l
′′
n
n = 1.203(2). It can thus be inferred that the incident

square-like random walker attaches to the active zone of the
cluster with a probability of p′+ � 60% on choosing the single-
side contact. Since all fjords of narrow throat are filled with
dead sites inside the accessible perimeter, we can estimate the
number of sites N− on it with triple-side contact possibility
by closing off all the narrow passageways of a lattice spacing.
This yields the outer part of the accessible perimeter whose
length l

′′′
n also has a linear relationship with the size of the

cluster, i.e., as shown in figure 3, l′′′n
n = 1.068(2). Comparing

with the same relation for l
′′
n , one can conclude that N− ∼

0.067n. However, on closing off the narrow passageways, all
possible remaining contacts will be single-side or double-side
ones; nevertheless it is not possible to estimate an exact value
for p+. This is because these attachments can also make a
negative contribution to the length of the external accessible
perimeter.

These linear relationships seem to be characteristic
features of DLA clusters. In fact, for common fractals
appearing in two-dimensional statistical mechanics, such as
critical Ising or percolation clusters, the length of the cluster
boundaries (or loops) l with fractal dimension df has a scaling
relation with the area of the loops, as A ∼ l2/df .

Motivated by this relation, we examine the behavior of the
length of the perimeters versus the area enclosed by them. As
depicted in figure 4, we find that all the perimeter lengths l ′n , l

′′
n

and l
′′′
n have linear relations with their area. Note that this area
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Figure 5. Main frame: the average number of red sites Nr versus the
gyration radius Rg of DLA clusters of different sizes. Inset: linear
relation between Nr and the cluster size n.

is not necessarily equal to the cluster size (multiplied by the
square lattice spacing a2). These linear relationships show that
applying the scaling relation A ∼ l2/df to measure the fractal
dimension of the perimeter of DLA clusters would thus lead to
a misleading result, as reported in [10].

The fractal dimension of the perimeters df can be
computed by using the scaling relation between the average
length of the perimeter l and a linear size scale, e.g., the
gyration radius Rg, i.e., l ∼ Rdf

g . As long as the gyration radius
of the growing cluster is used as the linear size scale in this
relation, we find that the fractal dimensions of all perimeter
lengths, within the statistical errors, are equal to the same
value: the fractal dimension of the DLA cluster. This result is
in agreement with the same one reported in [11]. Nevertheless,
if we scale the perimeter lengths with their gyration radius (i.e.,
the gyration radius of the loops produced by the perimeters
themselves), we find minor differences among the fractal
dimensions. If dc

f , df, d ′
f , d ′′

f and d
′′′
f represent the fractal

dimensions of the DLA cluster, the perimeter, the external
perimeter, the accessible perimeter and the accessible external
perimeter, respectively, we find that dc

f = 1.707(3), df =
1.710(3), d ′

f = 1.717(3), d ′′
f = 1.723(3) and d

′′′
f = 1.725(3).

In the following, we use the concept of red sites
borrowed from two-dimensional critical structures [12] to have
a quantitative measure for the ramification of the DLA cluster.
A red site on the DLA cluster is a site such that cutting it leads
to a splitting of the cluster. This measures the number of nodes
connected by effectively one-dimensional links.

We carried out simulations in order to compute the fractal
dimension of the red sites dr on the DLA cluster by using the
scaling relation Nr ∼ Rdr

g , where Nr is the number of red sites
and Rg is the gyration radius of the DLA cluster. Due to the
large amount of time needed, the simulation was performed
for clusters of size n � 4.5 × 104. As shown in figure 5, we
find that, within statistical errors, the fractal dimension of the
red sites is equal to that of the DLA cluster, i.e., dr = 1.709(3).

We also find that the number of red sites grows linearly
with the cluster size according to the relation Nr

n = 0.673(2).
In conclusion, we found that different surface parameters

for DLA clusters such as the length of the hull, the accessible
perimeter and their external parts, and also the number of dead
sites, grow linearly with the cluster size. These findings have
been used to investigate the microscopic features of the cluster
growth by measuring the probability that a square-like incident
random walker attaches to the cluster by choosing single-side,
double-side or triple-side contacts. We also found that the
border of the DLA grows linearly with the total area enclosed
by it. We have measured the fractal dimension of the red sites
on the DLA cluster as equal to that of the cluster itself. The
average number of red sites has been shown to have a linear
relation with the cluster size.
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